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Daniel Kersten
Lecture 13: Edge Detection

Initialize

‡ Read in Statistical Add-in packages:

In[13]:= Off@General::spell1D;
<< MultivariateStatistics`

In[25]:= SetOptions@ArrayPlot, ColorFunction Ø "GrayTones", DataReversed Ø False,
Frame Ø False, AspectRatio Ø Automatic, Mesh Ø False,
PixelConstrained Ø True, ImageSize Ø SmallD;

SetOptions@ListPlot, ImageSize Ø SmallD;
SetOptions@Plot, ImageSize Ø SmallD;
SetOptions@DensityPlot, ImageSize Ø Small, ColorFunction Ø GrayLevelD;
nbinfo = NotebookInformation@EvaluationNotebook@DD;
dir =

H"FileName" ê. nbinfo ê. FrontEnd`FileName@d_List, nam_, ___D ß

ToFileName@dDL;

In[196]:= downsample@imaged_, f_D := Take@imaged, 81, -1, f<, 81, -1, f<D

In[172]:= cup = ImageDataB F;

In[173]:= width = Dimensions@ cupD@@1DD;

Outline



Outline

Last time

‡ Efficient coding

Task neutral 

1rs order statistics

- point-wise non-linearities, histogram equalization, receptors and information capacity

2nd order statistics

- lateral inhibition, ganglion cells and predictive coding

--opponent color processing (principal components analysis)

--cortical representation

Decorrelation, PCA

3rd or higher orders?

contrast normalization

Today: Continue with discussion of the two views of the function of early local visual 
spatial coding

‡ Spatial (difference) filtering as efficient coding or as part of a system of edge detectors (or both?)

‡ Local image measurements that correlate well with useful surface properties

task specific--find "significant" intensity changes

edge detection

1rst and 2nd spatial derivatives (i.e. the edge and bar detectors)

relation to center-surround and oriented receptive fields
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‡ Problems with edge detection

Edge Detection

Introduction

In[174]:= new = cup;
new@@width ê 2, AllDD = 0;
GraphicsRow@8ArrayPlot@new, Mesh Ø FalseD,

ListPlot@ cup@@width ê 2DD, PlotJoined Ø True, PlotRange Ø 80, 1<,
ImageSize Ø SmallD<D

Out[176]=
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Edge detection as differentiation

‡ The Noise/Scale trade-off

The definition of edge detection is very tricky--exactly what do we want to detect? We would like to label 
"significant" intensity changes in the image. One definition of significant edges is that they are the ones with the biggest 
change in intensity. The biggest would correspond to step changes. In Mathematica, these can be modeled as g(x) = 
UnitStep[]. One of the first problems we encounter is that edges in an image are typically fuzzy, either due to optical blur 
in the imaging device, or because the  scene causes of edges are not changing abruptly. Our generative model for image 
data f is to convolve the step with a blur function:

f(x) = Ÿ gHx - x 'L blurHx 'L „ x ' = g*blur

where g() is the signal to be detected or estimated. g(x) is a step function:

In[40]:= g@x_D := UnitStep@x - 1D;
Plot@g@xD, 8x, -2, 2<, PlotStyle Ø 8Thick, Hue@0.9D<D

Out[41]=
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Depending on the type of blur,  the image intensity profile f(x) will look more or less like:

In[42]:= edge[x_,s_] := 1/(1 + Exp[-x/s])
Plot[edge[x,.3],{x,-2,2},Ticks->None]

Out[43]=

One way of locating the position of the edge in this image would be to take the first derivative of the intensity function, 
and then mark the edge location at the peak of the first derivative:
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One way of locating the position of the edge in this image would be to take the first derivative of the intensity function, 
and then mark the edge location at the peak of the first derivative:

In[44]:= dedge@u_, s_D := D@edge@x, tD, xD ê. x Ø u ê. t Ø s
Plot@dedge@u, .3D, 8u, -2, 2<, Ticks Ø NoneD

Out[45]=

Alternatively, we could take the second derivative, and look for zero-crossings to mark the edge location.

In[46]:= d2edge[u_,s_] := D[dedge[x,t],x]/.x->u /.t->s
Plot[d2edge[u,.3],{u,-2,2},Ticks->None]

Out[47]=

So far so good. But real images rarely have a nice smooth intensity gradation at points that we subjectively would identify 
as a clean edge. A more realistic generative model for intensity data would be:

f(x) = Ÿ gHx - x 'L blurHx 'L „ x ' + noise

We'll add a fixed sample of high-frequency "noise":
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In[48]:= noisyedge[x_,s_] := edge[x,s] + 
0.01 Cos[10 x] + -0.02 Sin[10 x] + 0.03 Cos[12 x] + 0.04 Sin[12 x] +
-0.01 Cos[13 x] + -0.03 Sin[13 x] + 0.01 Cos[14 x] + 0.01 Sin[14 x] +
-0.04 Cos[25 x] + -0.02 Sin[25 x] + 0.02 Cos[26 x] + 0.03 Sin[26 x];

Plot[noisyedge[x,.3],{x,-2,2},Ticks->None]

Out[50]=

Now, if we take the first derivative, there are all sorts of peaks, and the biggest isn't even where the edge is:

In[51]:= dnoisyedge[u_,s_] := D[noisyedge[x,t],x]/.x->u /.t->s
Plot[dnoisyedge[u1,.3],{u1,-2,2},Ticks->None]

Out[52]=

Looking for zero-crossings looks even worse:

In[53]:= d2noisyedge[u_,s_] := D[dnoisyedge[x,t],x]/.x->u /.t->s
Plot[d2noisyedge[u1,.3],{u1,-2,2},Ticks->None]

Out[54]=

There are many spurious zero-crossings.

In general, the higher the frequency of the noise, the bigger the problem gets. We can see what is going on by taking the 
nth derivative of the sinusoidal component with frequency parameter f. Here is the 3rd derivative of a component with 
frequency f:
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There are many spurious zero-crossings.

In general, the higher the frequency of the noise, the bigger the problem gets. We can see what is going on by taking the 
nth derivative of the sinusoidal component with frequency parameter f. Here is the 3rd derivative of a component with 
frequency f:

In[55]:= D@Sin@x fD, 8x, 3<D

Out[55]= -f3 Cos@f xD

The magnitude of the output is proportional to the frequency raised to the power of the derivative. Not good.

‡ A solution: pre-blur using convolution

As in your Assignment #2, a possible solution to the noise problem is to pre-filter the image with a convolution operation 
that blurs out the fine detail which is presumably due to the noise. And then proceed with differentiation. The problem is 
how to choose the degree of blur. Blur the image too much, and one can miss edges; don't blur it enough, and one gets 
false edges. 

This is one edge detection dilemma: Too much blur and we miss edges, too little and we have false alarms.

Some biologically motivated edge detection schemes

Edge detection using 2nd derivatives: Marr-Hildreth
Your Assignment 2 looked at one scheme for edge detection that has received some attention for its biological plausibility. 
This is the basis of the Marr-Hildreth edge detector. The idea is to: 1) pre-blur with a Gaussian; 2) take second derivates of 
the image intensity using the Laplacian ; 3) locate zero-crossings. In short,

Find zero-crossings of: r(x,y) = Ÿ “2GsHx ', y 'L gHx - x ', y - y 'L „ x ' „ y ' = I“2GsM*g 

“2= ¶∂2

¶∂x2
+ ¶∂2

¶∂y2
 is the Laplacian operator, which takes the second derivatives in x and y directions, and sums up the result. 

As you saw in Assignment 2, the  Laplacian and  convolution operators are combined into the "del-squared G" operator, 
“2Gs, where

 Gs[x,y] = ‰
1
2

-
x2

s
-
y2

s

2 p s

13.EdgeDetection.nb 7



In[56]:= S = 88s, 0<, 80, s<<; m = 80, 0<;
ndist = MultinormalDistribution@m , S D;
PDF@ndist, 8x, y<D

Out[58]=
‰

1
2

-
x2

s
-
y2

s

2 p s2

The order of the operators doesn't matter, so one can take the Laplacian of the Gaussian first, and then convolve this del-
squared G kernel with the image, or one can blur the image first, and then take the second derivatives:

r(x,y) = “2 HGs *gL

The operators are said to "commute". 

As s approaches zero, Gsbecomes a delta function, and the “2Gs becomes a Laplacian “2,  i.e. a second derivative 
operator. For small s, the detector is sensitive to noise. For large s, it is less sensitive to noise, but misses edges. The 
biological appeal of the Marr-Hildreth detector is that lateral inhibitory filters provide the  I“2GsM kernel. 

One could   build zero-crossing detectors by ANDing the outputs of appropriately aligned center-surround filters effec-
tively building oriented filters out of symmetric ganglion-cell (or LGN) like spatial filters (Marr and Hildreth). 

But what about the oriented filters in the cortex? One interpretation consistent with the Hubel-Wiesel edge detector 
interpretation of sine-phase receptive fields in V1, is in terms of 1rst derivatives.

Edge detection using 1rst derivatives
Because of the orientation selectivity of cortical cells, they have sometimes been   interpreted as edge detectors. 

We noted earlier how a sine-phase Gabor function filter (1 cycle wide) would respond well to an edge oriented with its 
receptive field. 
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In[130]:= swidth=32;
sgabor[x_,y_, fx_, fy_,sig_] := 

N[Exp[(-x^2 - y^2)/(2 sig*sig)] Sin[
2 Pi (fx x + fy y)]];

edgefilter = Table[sgabor[i/32,j/32,0,2/3,1/2],
{i,-swidth,swidth-1},{j,-swidth,swidth-1}];
ArrayPlot[edgefilter,MeshØFalse,Frame->False,PlotRange->{-1,1}]

Out[133]=

As the width of the gaussian envelope decreases, these sine-phase or odd-symmetric filters can also be viewed as 1rst 
order spatial derivatives. 

How can we combine oriented filters to signal an edge? The first-derivative operation takes the gradient of the 
image. From calculus, you learned that the gradient of a 2D function evaluated at (x,y) is a vector that points in the 
direction of maximum change. So taking the gradient of an image should produce a vector field where the vectors are 
perpendicular to the edges. The length of the gradient is a measure of the steepness of the intensity gradient. 

‡ The gradient of a function

“g =
¶∂gHx, yL

¶∂x
,

¶∂gHx, yL

¶∂y

In[177]:= contcup = ListInterpolation@Transpose@Reverse@cupDD,
881, width<, 81, width<<D;

Plot the derivative in the x-direction
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In[281]:= gd1 = DensityPlot@contcup@x, yD, 8x, 1, width<, 8y, 1, width<,
Mesh Ø False, PlotPoints Ø 128D;

gd2 = DensityPlot@Evaluate@D@contcup@x, yD, xDD, 8x, 1, width<,
8y, 1, width<, PlotPoints Ø width ê 2, Mesh Ø False, Frame Ø False,
PlotRange Ø 8-100, 100<D;

In[283]:= GraphicsRow@8gd1, gd2<D

Out[283]=

Let's take the derivatives in both the x and y directions:

In[181]:= fxcontcup@x_, y_D := D@contcup@x1, y1D, x1D ê. 8 x1 Ø x, y1 Ø y<;

fycontcup@x_, y_D := D@contcup@x1, y1D, y1D ê. 8 x1 Ø x, y1 Ø y<;

Now let's put the x and y directions together and compute the squared gradient magnitude:

In[183]:= fcontcup@x_, y_D := D@contcup@x1, y1D, x1D^2 + D@contcup@x1, y1D, y1D^2 ê.
8 x1 Ø x, y1 Ø y<;

In[184]:= gradientedge = Table@N@fcontcup@x, yDD, 8x, 1, width<, 8y, 1, width<D;

The range of gradientedge is large, so we'll plot the Log to squeeze it down:
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In[185]:= ArrayPlot@Log@Transpose@gradientedgeD + .0001D, DataReversed Ø TrueD

Out[185]=

Doesn't look too bad, but it isn't clean and some of our satisfaction is premature and the result of our visual system effec-
tively fitting the edge representation above into the interpretation of a cup. Further, we haven't specified a blur level, or a 
criterion for the threshold. We haven't put a measure of confidence on the edges. 

Manipulate@ArrayPlot@Sign@t - Transpose@gradientedgeDD,
DataReversed Ø TrueD, 88t, .01<, 0, Max@gradientedgeD<D

Out[186]=

t

0.0108

There is also useful information in the direction of the gradient vectors:
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In[191]:= gd3 = VectorPlot@8fxcontcup@x, yD, fycontcup@x, yD<, 8x, 1, width<,
8y, 1, width<, ImageSize Ø SmallD;

gd4 = VectorPlot@8fxcontcup@x, yD, fycontcup@x, yD< ê

Sqrt@fxcontcup@x, yD^2 + fycontcup@x, yD^2D, 8x, 1, width<,
8y, 1, width<, ImageSize Ø SmallD;

GraphicsRow@8gd3, gd4<D

Out[192]=
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Imagine trying to link up points along an edge with the information in the left panel---You get a better idea of how much 
variability remains in terms of both direction and magnitude. 

If we took many pictures of the same cup under different illumination conditions, one could measure how much variability 
(at a point) is  in the magnitude vs. direction of the gradient. Chen et al. (2000) did this and showed that there is much 
more variability in the magnitude than the direction of the gradient. This suggests that for illumination-invariant recogni-
tion, one should rely more on orientation than contrast magnitude. 

‡ Summing up: Combining a smoothing pre-blur with 1rst derivatives

As with the 2nd derivative zero-crossing detector, the idea is to blur the image, and then take the first derivates in the x 
and y directions, square each and add them up, the 1rst derivative analog to the 2nd derivative “2G operator.

The x and y components of the gradient of the blur kernel :
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In[145]:=

G@x_, y_, sx_, sy_D :=
‰

1
2

-
x2

sx
-
y2

sy

2 p Sqrt@Hsx^2 + sy^2LD
;

dGx@x_, y_D := D@G@x1, y1, 1, 2D, x1D ê. 8x1 Ø x, y1 Ø y<;
xg = DensityPlot@-dGx@x, yD, 8x, -2, 2<, 8y, -2, 2<, Mesh Ø False,

Frame Ø False, PlotPoints Ø 64D;
dGx@x_, y_D := D@G@x1, y1, 2, 1D, y1D ê. 8x1 Ø x, y1 Ø y<;
yg = DensityPlot@-dGx@x, yD, 8x, -2, 2<, 8y, -2, 2<, Mesh Ø False,

Frame Ø False, PlotPoints Ø 64D;
GraphicsRow@8xg, yg<D

Out[150]=

--2D smoothing operator followed by a first order directional derivatives in the x and y directions.

If one takes the outputs of two such cells, one vertical and one horizontal, the sum of the squares of their outputs corre-
spond to the squared magnitude of the gradient of the smoothed image:

(rx(x,y), ry(x,y)) = ( ¶∂GsHx,yL
¶∂x

 , ¶∂GsHx,yL
¶∂y

)*g(x,y) = “Gs*g(x,y) = ( ¶∂GsHx,yL
¶∂x

*gHx, yL , ¶∂GsHx,yL
¶∂y

*gHx, yL)

 Then to get a measure of strength, compute the squared length: 

“Gs *gHx, yL 2 = “HGs * g Hx, yLL 2 = rx(x,y) 2+ ry(x,y) 2

We'll encounter this idea later when we extend detecting edges in space to detecting edges in space-time in order to make 
motion measurements.
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Morrone & Burr edge detector--combining even and odd filters
The Marr-Hildreth 2nd derivative operation is similar to the even-symmetric cosine-phase gabor or "bar detector". The 
1rst derivative gradient operator is similar to the odd-symmetric sine-phase gabor. Any reason to combine them?

Sometimes the important "edge" is actually a line--i.e. a pair of edges close together. A line-drawing is an example.

The Appendix shows how one can combine both sine and cosine phase filters to detect both edges and lines. A sine and 
cosine phase pair are sometimes called "quadrature (phase) pairs". The summed squared outputs can be interpreted as 
"local contrast energy".

Quadrature pairs will also crop up later in the context of motion detection.

Problems with interpreting V1 simple/complex cells as edge detectors
Although one can build edge  detectors from oriented filters, simple cells cannot uniquely signal the  presence of 

an edge for several reasons. One is that their response is a  function of many different parameters. A low contrast bar at an 
optimal  orientation will produce the same response as a bar of higher contrast at a  non-optimal orientation.  There is a 
similar trade-off with other parameters  such as spatial frequency and temporal frequency. In order to make explicit the 
location of an edge from the responses of a population of cells, one would have to compute something like the "center-of-
mass" over the population, where response rate takes the place of mass. Another problem is that edge detection has to take 
into account a range of spatial scales.  We discussed evidence earlier that the cortical basis set does encompass a range of 
spatial scales, and in fact may be "self-similar" across these scales. See Koenderink (1990) for a  theoretical discussion of 
"ideal" receptive field properties from the point of view of basis elements. One way of combining information efficiently 
across scales is to use a Laplacian image pyramid (See supplementary links on class web page). Oriented information can 
be computed across scales using a steerable pyramid.

Konishi et al. (2003) used signal detection theory and real images to show that there is an advantage in combining informa-
tion across scales when doing edge detection.

Segmentation & Why edge detection is hard
The problem is to get from intensity edges to object boundaries. 

The problem of texture and background
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The problem of texture and background
The above analysis assumed that an edge detection should be the solution to an image-based generative problem: Given 
intensity f as a function of x,

estimate a step-function g(x):

f(x) = Ÿ gHx - x 'L blurHx 'L „ x ' + noise

We used the cup image to illustrate how scale and noise (represented by the blur and noise processes) confound estimates 
of g(). But the cup image had a fairly uniform figure and background. Consider the more typical case of a patterned cup 
against a non-uniform background:

camo = ImageDataBColorConvertB , "Grayscale"FF;
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camod = downsample@camo, 2D;
cupd = downsample@cup, 2D;
images = 8Image@cupdD, Image@camodD<;
Manipulate@
Pane@
Map@Binarize@ImageAdjust@GradientFilter@Ò, radiusD, 8.7, .6<D, tD &,
imagesD, 8300, 150<D, 8radius, 1, 10, 1<, 8t, 0, 1, .1<,

SaveDefinitions Ø TrueD

Out[231]=

radius

t

: , >

From: http://www.flickr.com/photos/96221617@N00/280637989/

The above example illustrates the problem of misleading edges both at the boundary between the object and background, 
but also between texture elements in the object and its boundary. One needs to take into account texture as well as inten-
sity in determining object boundaries (see Malik et al, 2001).
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The problem of edge cause: the same intensity gradient means different things 
depending on context

‡ Land & McCann's "Two squares and a happening"

In[104]:= size = 256;Clear[y]; slope = 0.0005;
y[x_] := slope x +0.5 /;x<1*size/2
y[x_] := slope (x-128) +0.5  /; x>=1*size/2

In[107]:= picture = Table[Table[y[i],{i,1,size}],{i,1,size}];
ArrayPlot[picture,Frame->False,Mesh->False, 

PlotRange->{0,1}, AspectRatio->Automatic]

Out[108]=

The left half looks lighter than the right half. But, let's plot the intensity across a horizontal line:
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In[109]:= new = picture;
new@@128, AllDD = 0;
GraphicsRow@8ArrayPlot@new, PlotRange Ø 80, 1<D,

g0 = ListPlot@ picture@@128DD, PlotJoined Ø True, PlotRange Ø 80.2, .8<D<D

Out[111]=
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The two ramps are identical...tho' not too surprising in that that is how we constructed the picture. How can we explain 
this illusion based on what we've learned so far about  human contrast sensitivity as a function of spatial frequency--in 
terms of a single-channel model?

One explanation is that the visual system takes a spatial derivative of the intensity profile. Recall from calculus that the  
second derivative of a linear function is zero. So a second derivative should filter out the slowly changing linear ramp in 
the illusory image. We approximate the second derivative with a discrete kernel (-1,2,-1). 

The steps are: 1) take the second derivative of the image; 2) threshold out
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In[112]:= filter = 8-1, 2, -1<;

H*Take the second derivative at each location*L
fspicture = ListConvolve@filter, picture@@128DDD;
g1 = ListPlot@fspicture, PlotJoined Ø True, PlotRange Ø 8-0.1, .1<,

Axes Ø FalseD;

H*Now integrate twice--to undo the the second derivative and
"restore" the picture*L

integratefspicture = FoldList@Plus, fspicture@@1DD, fspictureD;
integratefspicture2 = FoldList@Plus, integratefspicture@@1DD,

integratefspictureD;

g2 = ListPlot@integratefspicture2, PlotJoined Ø True, Axes Ø FalseD;
GraphicsRow@8g0, g1, g2<, ImageSize Ø LargeD

Out[118]=
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To handle gradients that aren't perfectly linear, we could add a threshold function to set small values to zero before re-
integrating:

threshold@x_, t_D := If@x > t, x, 0D; SetAttributes@threshold, ListableD;

fspicture = threshold@fspicture, 0.025D;

Or one can take just the first derivative, followed by the threshold function

‡ "Two cylinders and no happening"

But is edge enhancement and and spatial filtering a good way to explain the lightness effect? Up until the early 1990's 
many people thought so, and this was a standard textbook explanation of these kinds of lightness illusions.

What if we measure the intensity across a horizontal line in the "slab" on the left, and the "two-cylinders" on the right?
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They are also the same! They would both look something like this:
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But the perceived lightness contrast for the slabs is significantly stronger than it is for the two cylinders. A spatial convolu-
tion/derivative model would predict the same for both. The spatial convolution operation won't work as an explanation!

One interpretation of this observation is that the visual system has knowledge of the type of edge--i.e. whether it is due to 
pigment or to self-occlusion/contact. (See Knill and Kersten, 1991).

Edge classification: Some causes of edges are more important than others: task-
dependence
We’ve seen that uncertainty due to noise and spatial scale confound reliable edge detection. But the above demonstrates 
another reason why edge detection is hard--local intensity gradients can have several possible meanings. Even when there 
is little or no noise, local measurements of contrast change say very little about the physical cause of the gradient. And a 
"smart" visual system takes the causes into account.
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So on the one hand, it still makes sense to interpret lateral inhibitory filters and oriented cortical filters as possible compo-
nents of an edge detection system, but we have to allow for considerable uncertainty in the significance of their outputs--
i.e. a local edge detector typically has a low signal-to-noise ratio for a variety of ways of defining signals, e.g., whether the 
causes are geometric or photometric.

For tasks such as object recognition, vision places a higher utility on surface and material edges than on other types. 
Surface edges are used differently from material edges. Shadow edges are variable yet potentially important for stereo. 
Specular edges are variable, but problematic for stereo because they are at different surface positions for the two eyes.

Combining signal detection theory with edge detection
Canny (1986). 

Possible project idea: Build a Bayesian edge detector using gradient statistics measured on and off of 
real edges, and using methods from signal detection theory to decide theory to decide whether a given 
measurement is on or off of an edge.

The left panel of the figure below shows "range data", where geometric depth from the camera is represented by graylevel, 
with dark meaning close, and light meaning far. The right panel shows intensity data. The data in the left can be used to 
define measures of "geometric ground truth", and one can devise edge detectors based on a signal detection theory analysis 
of how well the intensity changes on the right predicts geometrical changes on the left. In other words, what edge detector 
provides the best ROC performance? (See Konishi et al., 2003).
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Natural images & segmentation
Where to draw the important contours?

0 10 20 30 40 50 60
0

10

20

30

40

50

60

How can one go from the imperfect output of a low-level edge detector to a clean "line-drawing" representing the true 
boundaries of an object? Grouping local measurements that are similar is one step. This can be at the edge or region level, 
i.e. grouping local edge measurements into longer lines and grouping features within a region.  Grouping processes are 
sometimes called "intermediate-level" because they don't rely on specific knowledge about particular object classes, but 
just on how contours typically go, or how features are typically related (i.e. similar orientations, colors, motion direc-
tion,...). Perceptual grouping or similarity principles were studied by Gestalt psychologists in the early 1900s. 

In addition,  the visual system seems to be solving a generative model that is more scene-based than image-based--it cares 
about the type of edge, and the types of objects and arrangements likely to be encountered. This will be the focus of the 
next few lectures.

Even with intermediate-level grouping, and edge selection based on scene-based filtering, finding the boundaries of 
objects requires more specific knowledge or memory about the possible shapes of previously seen objects. The well-
known dalmation dog illusion illustrates the high-level knowledge the human visual system brings to bear on the problem 
of segmenting an object.
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To translate edge detection into useful segmentations is a non-trivial computer vision problem. For state-of-the-art work 
on this, see Malik et al. (2001) and Tu and Zhu (2002), and a preprint: http://www.stat.ucla.edu/~sczhu/papers/IJCV_pars-
ing.pdf

Given the problems of edge detection in the absence of context, it seems more appealing to interpret the spatial filtering 
properties of V1 as efficient encoding. However, if one thinks of V1 oriented cell responses as representing tentative 
"edges", perhaps with a representation of confidence, then one can begin to understand how high-level "models" may be 
used to select the edgest that belong, and reject those that don't (Yuille and Kersten, 2006). How these tentative edges 
might be extracted from both intensity and textural transitions, and how high-level information might constrain these 
remains a challenging area of research.

Interest points & saliency
Human vision does more than seek out edges as a basis for object detection and recognition. One basic function is to direct 
the eyes to so-called salient points in an image. In 1954, Fred Attneave pointed out that people's eye fixations were 
attracted to some features of an image more than others. In "Attneave's cat", shown below, eye movements tend to go to 
points of high curvature. The Appendix shows one way to extend derivative operators to amplify corners. 

There has been a focus in recent years to model first fixations in natural images (Itti & Koch, 2001; Torralba et al., 2006, 
Zhang et al., 2008). The idea is that first-fixations may be driven by fairly low-level image properties. The key idea is that 
eye movements go to regions that have low probability given either the current image context, or a generic natural image 
context. 

Subsequent fixations are more difficult to model because of they can be largely determined by the task the person is trying 
to accomplish. 

Next time
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Next time

‡ Mid-term exam

Next lecture

‡ Beyond V1: Extra-striate visual cortex

‡ Surfaces from images

‡ Scene-based modeling

Appendices

The Hessian, "Interest operators", and saliency.

In[232]:= SetOptions@ArrayPlot, ColorFunction Ø "GrayTones", DataReversed Ø True,
Frame Ø False, AspectRatio Ø Automatic, Mesh Ø False,
PixelConstrained Ø True, ImageSize Ø SmallD;

‡ The input 64x64 image: face

In[234]:= width = Dimensions@faceDP1T; size = width;

hsize =
width

2
; hfwidth = hsize; height = Dimensions@faceDP2T; face;

gface = ArrayPlot@faceD;

Computing both the first and second derivatives of image intensity can be thought of as filters to pick out regions of an 
image that have "salient", i.e. rapid, intensity changes. A natural extension is to look at all four combinations of second 
derivatives. 

Calculating the Hessian of an image using function interpolation.

The Hessian of a function f, H(f(x1, x2, ..., xn)) is given by:
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For our purposes, {x1,x2} = {x,y}, so the Hessian of an image returns a 2x2 matrix at each point (x,y) that represents the 
four combinations of second derivatives in the x and y directions. The determinant of each of the 2x2 matrices provides a 
scalar which is a measure of the "area" of each 2x2 matrix. The area can be used as a rough measure of saliency or local 
"interest", which takes into account rates of change in x and y, for example at "corners". 

For more information about interest operators in computer vision, read about the SIFT filter (Lowe, 1999).

Let filterface = f, where we' ve blurred out face a little to reduce quantization artifacts :

In[236]:= kernel = N@881, 1, 1<, 81, 1, 1<, 81, 1, 1<<D;
filterface = ListConvolve@kernel, faceD;

In[238]:= faceFunction = ListInterpolation@Transpose@filterfaceD,
88-1, 1<, 8-1, 1<<D;

In[239]:= hessian@x_, y_D := Evaluate@D@faceFunction@x, yD, 88x, y<, 2<DD;

‡ Calculate and plot each of the components of the Hessian at each image point
In[240]:=
dxxtemp = Table@hessian@x, yD@@1, 2DD, 8x, -1, 1, 0.005<, 8y, -1, 1, 0.005<D;
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In[241]:= GraphicsRow@8gface, ArrayPlot@Transpose@dxxtempDD,
Histogram@Flatten@dxxtempDD<D

Out[241]=

The determinant of the Hessian provides a simple measure of "salience". Better models take into account how unexpected 
local features are relative to the background or likely backgrounds (See Torralba et al., 2006, Itti & Koch, 2001,  and 
Zhang et al., 2008.) These models have been applied to predicting human visual eye movements.)

In[242]:= htemp = Table@Det@hessian@x, yDD, 8x, -1, 1, 0.005<,
8y, -1, 1, 0.005<D;

In[243]:= GraphicsRow@8gface, ArrayPlot@Transpose@htempDD,
Histogram@Flatten@htempDD<D

Out[243]=

For current computer vision work on local feature detection, see papers by Lowe in the references, and      http://en-
.wikipedia.org/wiki/Scale-invariant_feature_transform

Also see: http://en.wikipedia.org/wiki/Interest_point_detection

Morrone & Burr: polarity sensitive & polarity insensitive
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Morrone & Burr: polarity sensitive & polarity insensitive

‡ Morrone and Burr edge/bar detectors

Suppose we convolve an input signal with an even filter (e.g. Gaussian enveloped cosine-wave) to produce 
reponse Re, and then convolve the same input with an odd filter (say, a Gaussian enveloped sine-wave) to produce 
response Ro. The filters are orthogonal to each other, and so are the responses. Re will tend to peak at "bars" in the image 
whose size is near half the period of the cosine-wave. Ro will tend to peak near edges.

The local contrast "energy" is defined to be: Sqrt[Re^2 + Ro^2]. Morrone and Burr showed that the local energy 
peaks where the Fourier components of an image line up with zero-phase--i.e. at points where the various Fourier compo-
nents are all in sine-phase. These points are edges. But it also peaks near bar features, arguably also interesting image 
features where the phase coherence is at 90 degrees. In addition to its neurophysiological appeal, a particularly attractive 
feature of this model is that if one adds up responses over multiple spatial scales, evidence accumulates for edges because 
the local energy peaks coincide there. They also showed how their model could be used to explain Mach bands.

‡ Mach bands & the Morrone & Burr edge detector

In[244]:= size = 256;Clear[y];
low = 0.2; hi = 0.8;
y[x_] := low /; x<size/3
y[x_] :=

((hi-low)/(size/3)) x + (low-(hi-low)) /; x>=size/3 && x<2*size/3
y[x_] := hi /; x>2*size/3
Plot[y[x],{x,0,256},PlotRange->{0,1}];

In[250]:= picture = Table[Table[y[i],{i,1,size}],{i,1,size}];
ArrayPlot[picture,Frame->False,Mesh->False, 

PlotRange->{0,1}, AspectRatio->Automatic];

‡ Gabor filters

In[252]:= sgabor@x_, y_, fx_, fy_, sig_D :=
N@Exp@H-x^2 - y^2L ê H2 sig * sigLD Sin@2 Pi Hfx x + fy yLDD;

cgabor@x_, y_, fx_, fy_, sig_D :=
N@Exp@H-x^2 - y^2L ê H2 sig * sigLD Cos@2 Pi Hfx x + fy yLDD;
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In[254]:= fsize = 32;
sfilter = Table@sgabor@Hi - fsize ê 2L, Hj - fsize ê 2L, 0, 1 ê 8, 4D,

8i, 0, fsize<, 8j, 0, fsize<D;
sfilter = Chop@sfilterD;
g10 = ArrayPlot@sfilter, Mesh Ø False, PlotRange Ø 8-1, 1<, Frame Ø FalseD;

In[257]:= fsize = 32;
cfilter = Table@cgabor@Hi - fsize ê 2L, Hj - fsize ê 2L, 0, 1 ê 8, 4D,

8i, 0, fsize<, 8j, 0, fsize<D;
cfilter = Chop@cfilterD;
g11 = ArrayPlot@cfilter, Mesh Ø False, PlotRange Ø 8-1, 1<, Frame Ø FalseD;

‡ Apply odd (sine) filter

In[260]:= fspicture = ListConvolve@sfilter, pictureD;
ArrayPlot@fspicture, Mesh Ø FalseD;

‡ Apply even (cosine) filter

In[262]:= fcpicture = ListConvolve@cfilter, pictureD;
ArrayPlot@fcpicture, Mesh Ø FalseD;

‡ Look for peaks in local contrast energy

In[264]:= ss = Sqrt@fspicture^2 + fcpicture^2D;

In[265]:= ArrayPlot@ss, Mesh Ø FalseD;

In[266]:= ListPlot@ss@@128DDD;

Two cylinders, no illusion

In[267]:= twoc = ImageDataB F;

reds = twoc@@All, All, 2DD;
Dimensions@redsD
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In[274]:= ArrayPlot@reds, DataReversed Ø FalseD
ListPlot@reds@@Dimensions@redsD@@1DD ê 2DDD

Out[274]=

Out[275]=
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